The RNAi-mediated silencing of xanthine dehydrogenase impairs growth and fertility and accelerates leaf senescence in transgenic Arabidopsis plants.

نویسندگان

  • Ayami Nakagawa
  • Saori Sakamoto
  • Misa Takahashi
  • Hiromichi Morikawa
  • Atsushi Sakamoto
چکیده

Xanthine dehydrogenase (XDH) is a ubiquitous enzyme involved in purine metabolism which catalyzes the oxidation of hypoxanthine and xanthine to uric acid. Although the essential role of XDH is well documented in the nitrogen-fixing nodules of leguminous plants, the physiological importance of this enzyme remains uncertain in non-leguminous species such as Arabidopsis. To evaluate the impact of an XDH deficiency on whole-plant physiology and development in Arabidopsis, RNA interference (RNAi) was used to generate transgenic lines of this species in which AtXDH1 and AtXDH2, the two paralogous genes for XDH in this plant, were silenced simultaneously. The nearly complete reduction in the total XDH protein levels caused by this gene silencing resulted in the dramatic overaccumulation of xanthine and a retarded growth phenotype in which fruit development and seed fertility were also affected. A less severe silencing of XDH did not cause these growth abnormalities. The impaired growth phenotype was mimicked by treating wild-type plants with the XDH inhibitor allopurinol, and was reversed in the RNAi transgenic lines by exogenous supplementation of uric acid. Inactivation of XDH is also associated with precocious senescence in mature leaves displaying accelerated chlorophyll breakdown and by the early induction of senescence-related genes and enzyme markers. In contrast, the XDH protein levels increase with the aging of the wild-type leaves, supporting the physiological relevance of the function of this enzyme in leaf senescence. Our current results thus indicate that XDH functions in various aspects of plant growth and development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silencing SlELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence, and produces dark-green fruit

The multi-subunit complex Elongator interacts with elongating RNA polymerase II (RNAPII) and is thought to facilitate transcription through histone acetylation. Elongator is highly conserved in eukaryotes, yet has multiple kingdom-specific functions in diverse organisms. Recent genetic studies performed in Arabidopsis have demonstrated that Elongator functions in plant growth and development, a...

متن کامل

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis

Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) and participates in the ascorbate-glutathione cycle, which scavenges H2 O2 . Here, we report that chloroplastic/mitochondrial GR2 is an important regulator of leaf senescence. Seed development of the homozygous gr2 knockout mutant was blocked at the globular stage. Therefore, to inves...

متن کامل

A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis.

SAG101, a leaf senescence-associated gene, was cloned from an Arabidopsis leaf senescence enhancer trap line and functionally characterized. Reporter gene and RNA gel blot analyses revealed that SAG101 was not expressed until the onset of senescence in leaves. A recombinant SAG101 fusion protein overexpressed in Escherichia coli displayed acyl hydrolase activity. Antisense RNA interference in t...

متن کامل

The Effect of Chalcone Isomerase (Chi) Gene Silencing on Flavonoids Content in Petunia hybrida using RNAi Technology

have been bred with altered flower color using genetic engineering approaches. One of the most effective applications is the reduction of flower pigments by suppression of involved enzymes in their biosynthesis pathways. RNA interference (RNAi) has provided an effective tool for the knock down of genes involved in the production of flower pigments. In this study, a chi-RNAi construct was design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 48 10  شماره 

صفحات  -

تاریخ انتشار 2007